题目链接 vector 真的好用~
Problem
Alyona has a tree with vertices. The root of the tree is the vertex 1. In each vertex Alyona wrote an positive integer, in the vertex she wrote . Moreover, the girl wrote a positive integer to every edge of the tree (possibly, different integers on different edges).
Let's define as the sum of the integers written on the edges of the simple path from to .
The vertex controls the vertex if and only if is in the subtree of and .
Alyona wants to settle in some vertex. In order to do this, she wants to know for each vertex what is the number of vertices such that controls .
Input
The first line contains single integer .
The second line contains integers — the integers written in the vertices.
The next lines contain two integers each. The -th of these lines contains integers and — the parent of the -th vertex in the tree and the number written on the edge between and .
It is guaranteed that the given graph is a tree.
Output
Print integers — the -th of these numbers should be equal to the number of vertices that the -th vertex controls.
Examples
Input #1
5
2 5 1 4 6
1 7
1 1
3 5
3 6
Output #1
1 0 1 0 0
Input #2
5
9 7 8 6 5
1 1
2 1
3 1
4 1
Output #2
4 3 2 1 0
Notes
In the example test case the vertex 1 controls the vertex 3, the vertex 3 controls the vertex 5 (note that is doesn't mean the vertex 1 controls the vertex 5).
Solution
水题,很容易想到 的想法,即两两枚举,显然超时。 考虑枚举一个点,去找控制它的点,从它的父亲开始找,一直往上……我们要找的是 的点。显然 j 不断往上, 单调递增。所以用二分或者树上倍增找就可以了。
Code
#include<cstdio>
#include<cstring>
#include<iostream>
#include<vector>
using namespace std;
const int maxn=200005,maxe=400005;
int n,tot=0,a[maxn],fa[maxn],sum[maxn],lnk[maxn],son[maxe],nxt[maxe],w[maxe];
long long dst[maxn];
bool vis[maxn];
vector <int> vec;
inline int read(){
int ret=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9') ret=ret*10+ch-'0',ch=getchar();
return ret*f;
}
inline void add(int x,int y,int z){
tot++;son[tot]=y;w[tot]=z;nxt[tot]=lnk[x];lnk[x]=tot;
}
inline long long myabs(long long x){
return x>0?x:-x;
}
inline void BuildDistance(int x){
vis[x]=1;
for (int i=lnk[x];i;i=nxt[i]) if (!vis[son[i]]){
fa[son[i]]=x;
dst[son[i]]=(long long)dst[x]+w[i];
BuildDistance(son[i]);
}
}
inline long long GetDistance(int x,int y){
return myabs((long long)dst[x]-dst[y]);
}
inline void BuildSum(int x){
vis[x]=1;
int L=0,R=vec.size()-1,mid,now=-1;
while (L<=R){
mid=((R-L)>>1)+L;
if ((long long)GetDistance(x,vec[mid])<=(long long)a[x]){
now=mid;
R=mid-1;
} else L=mid+1;
}
if (now!=-1){
now=vec[now];
if (now!=x||GetDistance(x,now)<=a[x]) sum[fa[x]]++,sum[fa[now]]--;
}
vec.push_back(x);
for (int i=lnk[x];i;i=nxt[i]) if (!vis[son[i]]){
BuildSum(son[i]);
}
vec.erase(vec.end()-1);
}
inline void GetAnswer(int x){
vis[x]=1;
for (int i=lnk[x];i;i=nxt[i]) if (!vis[son[i]]){
GetAnswer(son[i]);
sum[x]+=sum[son[i]];
}
}
int main(){
n=read();
for (int i=1;i<=n;i++) a[i]=read();
for (int i=2;i<=n;i++){
int x=read(),y=read();
add(i,x,y);add(x,i,y);
}
BuildDistance(1);
memset(vis,0,sizeof(vis));
vec.clear();
vec.push_back(1);
BuildSum(1);
memset(vis,0,sizeof(vis));
GetAnswer(1);
for (int i=1;i<=n;i++) printf("%d ",sum[i]);
printf("\n");
return 0;
}